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ABSTRACT 
 

 In this article, we generalize the exponential distribution by compounding the 

extended exponential distribution (Gomez et al., 2014) and generalized exponential 

distribution (Gupta and Kundu, 2001) and call it modified exponential (ME) distribution. 

It includes as special submodels,Kumaraswamy exponential, generalized exponential and 

exponential distributions. We providea comprehensive description of the mathematical 

properties of the proposed distribution. Theestimation of the model parameters is 

performed by the maximum likelihood method. A simulation study is performed to assess 

the performance of the maximum likelihood estimators.The usefulness of the modified 

exponential distribution for modeling data is illustrated usingreal data set by comparison 

with some generalizations of the exponential distribution. 

 

KEYWORDS 
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1. INTRODUCTION 
 

 In many fields of sciences such as medicine, engineering and finance, amongst others, 

modeling lifetime data is very important. Several lifetime distributions introduced to 

model such types of data. The quality of the methods used in statistical analysis is highly 

dependent on the underlying statistical distributions. In the last two decades, several ways 

of generating new continuous distributions from classical ones were developed and 
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studied. However, there still remain many important problems where the real data does 

not follow any of the classical or standard probability models. 
 

 In this article, we present a new generalization of the exponential distribution via a 

new method and call it the modified exponential (ME) distribution. Other generalization 

of the exponential distribution are generalized exponential (Gupta and Kundu, 2001), 

beta exponential (Nadarajah and Kotz, 2006), beta generalized exponential (Barreto-

Souza et al., 2010), Kumaraswamy exponential (Cordeiro and de Castro, 2011), gamma 

exponentiated exponential (Ristic and Balakrishnan, 2012), Transmuted exponentiated 

exponential distribution (Merovci, 2013), exponentiated exponential geometric (Louzada 

et al., 2014) and Kumaraswamy transmuted exponential (Afify et al., 2016) distributions.  
 

 For a baseline random variable having pdf      and cdf     , Gupta and Kundu 

(2001) defined the one-parameter (   ) exponentiated-G cdf by  
 

                               (1) 
 

 The pdf corresponding to (1) becomes  
 

                   
 

 On the other hand, Gomez et al. (2014) introduced a weighted exponential 

distribution (       ) with the pdf and cdf  
 

         
            

   
            

and  

          
  

   
        

 

respectively. If    ,         is reduced to the exponential distribution and If  

    the distribution reduces to simple Lindly distribution. The pdf of         is a 

mixture of an exponential density,     , and a Gamma density,       , as shown below  
 

         
 

   
      

 

   
         

 

 Now, we propose a new extended family of distributions with name Modified-G  

(M-G) by  
 

       [       ] ,  
  

   
   [       ]-         (2) 

 

where    ,     and     are three additional shape parameters for the baseline  

cdf G.  
 

 Equation (2) provides a more flexible family of continuous distributions in term of 

pdf and hrf functions. It includes the Kumaraswamy-G family of distributions (Cordeiro 

and de Castro, 2011) (   ), the exponentiated family of distributions (       ) 

and the base distribution (           ).  
 

 The density function corresponding to (2) is given by  
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           {      [       ]}[       ]        (3) 

 

 Equation (3) will be most tractable when the cdf      and the pdf      have simple 

analytic expressions. 

 

1.1 Quantile Function 
 

 Let              quantile function of  , then for    , if         , then 
 

      [          ]
   

. 
 

 For    , we give two algorithms for simulation. The first algorithm is based on 

generating random data from the Lindley distribution using the exponential-gamma 

mixture. 

 

Algorithm 1 (Mixture Form of the new exponential distribution) 
 

1. Generate                          
 

2. Generate                            
 

3. Generate                        
 

4. If    
 

   
 set       {[      ]

 

 }, otherwise, set  

   {[      ]
 
 }           

 

 The second algorithm is based on generating random data from the inverse cdf in (2) 

distribution. 

 

Algorithm 2 (Inverse cdf) 
 

1. Generate                          
 

 2. Set  

      

{
 

 

{   
 
 
 
 
 
 
 
 
 0         

 
 
  

   
 
 1
}

 
 

}
 

 

          

 

where      is the Lambert function. The Lambert W function (Corless et al., 

1996; Jodra, 2010) has been applied to solve several problems in mathematics, 

physics and engineering. It is implicitly defined as the branches of the inverse 

relation of the function        ,   , that is 
 

                     . 
 

The Lambert function cannot be expressed in terms of elementary functions. 

However, a feature that makes the Lambert function attractive is that it is 

analytically differentiable and integrable. 
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2. THE ME DISTRIBUTION 
 

 Taking in                , the cdf of the ME distribution is given (for    ) 

by  
 

       ,  
  

   
   [  (      )

 
]- [  (      )

 
]
 
     (4) 

 

with corresponding pdf  
 

     
    

   
    (      )

   
{      [  (      )

 
]}[  (      )

 
]
   

. 

                        (5) 
 

 Note that the ME distribution is an extended model to analyze more complex data. 

Clearly, for    , we obtain the Kumaraswamy exponential distribution, for     and 

   , we have the generalized exponential distribution and for     and        
the ME distribution reduces to the exponential distribution. Figure 1 illustrates some of 

the possible shapes of the pdf of a ME distribution for selected values of the parameters 

      and  . 
 

3. USEFUL EXPANSIONS 
 

 By using binomial expansion, we can demonstrate that the cdf (4) admits the 

expansion  
 

       ∑ 

 

   

(
 
 
)                {  

  

   
   [           ]}  (6) 

 

 Then with Taylor expansion of logarithm function, equation (6) can be expanded as  
 

     ∑ ‎

 

   

∑ ‎

 

   

(
 
 
)        

  

   
               ∑ ‎

 

   

(
 
 
)                  

 

 
Figure 1: The pdfs of Various ME Distributions            .  
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 On the other hand, an expression for           (    real non-integer) is  

 

            ∑ ‎ 
                              (7) 

 

where  

        ∑ ‎ 
          (

 
 
) (

 
 
)              (8) 

 

 Thus by using (7) and (8) we obtain  
 

     ∑ ‎

 

   

  
            

 

where  

    
  ∑ ‎ 

   ∑ ‎ 
   (

 
 
)          

   
           ∑ ‎ 

   (
 
 
)                 (9) 

 

and           denotes the generalized exponential cdf with power parameter    . 

The last results hold for real non-integer  . For integer  , it is clear that the indices 

should stop at integers and we can easily update the formula.  
 

 The density function of ME distribution can be expressed as an infinite linear 

combination of generalized exponential densities as following  
 

     ∑ ‎

 

   

    
                     

  ∑ ‎ 
   ∑      (

 
 
)    

                 ‎ 
             (10) 

 

where                     is the generalized exponential density with power 

parameter    . Thus, some mathematical properties of the new distribution can be 

derived from those of the generalized exponential distribution based on (10) such as the 

ordinary and incomplete moments and generating function. 

 

4. MOMENTS 
 

 Let   has a ME distribution.Then, it can be shown that the th moment of   can be 

written as 
 

        ∑ ‎ 
   ∑    (

 
 
)    

       ∫              
 

 
‎ 

    

    ∑ ‎ 
   ∑      (

 
 
)    

       
      

[      ]   ‎
 
              (11) 

 

 The mean and variance can be simply calculated from (11). It is immediate from (11) 

that the moment generating function (mgf) of  , say      , is  
 

      ∑ ‎
  
 

  

 
      ∑ ‎∑

     (  )    
               

  [      ]     
   

 
             (12) 
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 The reliability function     , which is the probability of an item not failing prior to 

some time  , is defined by            . The reliability function of the ME 

distribution is given by  
 

     {  
  

   
   [  (      )

 
]} [  (      )

 
]
 
      

 

 The other characteristic property of interest of a random variable is the hazard rate 

function defined by  
 

     
    

      
  

 

which is an important quantity characterizing life phenomenon. It can be loosely 

interpreted as the conditional probability of failure, given it has survived to time t. The 

hazard rate function (hrf) for a ME random variable is given by  
 

      

   
   

                {      [           ]}

{  
  

   
   [           ]} [           ]

  (13) 

 

 The shape of hrf (13) is illustrated in Figure 2. This hazard rate shapes includes 

increasing and S shape. 

 

 
Figure 2: The hrf of Various ME Distributions            .  

 

5. ORDER STATISTICS 
 

 Order statistics make their appearance in many areas of statistical theory and practice. 

Suppose         is a random sample from any G distribution. Let      denote the  th 

order statistic. The pdf of      can be expressed as  
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                     {      }    

   ∑ ‎

   

   

     (
   
 

)                 

 

where  

  
 

          
 

 

 We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to 

a positive integer   (for    )  
 

(∑ ‎

 

   

   
 )

 

 ∑ ‎

 

   

     
   

 

where the coefficients      (for        ) are determined from the recurrence equation 

(with        
 )  

 

          
  ∑ ‎

 

   

 [        ]           

 

 We can demonstrate that the density function of the  th order statistic of ME 

distribution can be expressed as  
 

        ∑ ‎

 

     

               (14) 

 

where           denotes the generalized exponential density function with power 

parameter      ,  
 

     
                    

 

       
∑ ‎

   

   

             

           
  

 

  
  is given by (9) and the quantities          can be determined given that  

           
      

 and recursively for     
 

             
    ∑ ‎

 

   

[         ]   
             

 

 We can obtain the ordinary and incomplete moments, generating function and mean 

deviations of the ME order statistics from equation (14). 

 

6. CHARACTERIZATIONS 
 

 Characterizations of distributions is an important research area which has recently 

attracted the attention of many researchers. This section deals with various 

characterizations of distribution (2). The characterizations of the special case of (2) 
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(namely (4)) are given in the Appendix B. These characterizations are based on a simple 

relationship between two truncated moments. It should be mentioned that these 

characterization can be applied when the cdf does not have a closed form. The first 

characterization result employs a theorem due to Glanzel (1987) see Theorem 1 in 

Appendix A. Note that the result holds also when the interval   is not closed. Moreover, 

as mentioned above, it could be also applied when the cdf   does not have a closed form. 

As shown in Glanzel (1990) this characterization is stable in the sense of weak 

convergence. 

 

Proposition 1:  

 Let       be a continuous random variable and let,       [      (  

     )]
  

 and            (       ) for    . The random variable   has pdf 

(3) if and only if the function   defined in Theorem 1 has the form  
 

     
 

   
(       )      

 

Proof: 

 Let   be a random variable with pdf   , then  
 

(      ) [         ]  
 

   
(       )

 
      

and  

(      ) [         ]  
  

          
(       )

   
      

 

and finally 
 

                 
 

   
     (       )            

 

 Conversely, if   is given as above, then 
 

      
          

               
 

             

       
     

 

and hence 
 

          (       )      
 

 Now, in view of Theorem 1,   has density      
 

Corollary 1:  

 Let       be a continuous random variable and let       be as in Proposition 1. 

The pdf of   is (3) if and only if there exist functions    and   defined in Theorem 1 

satisfying the differential equation  
 

          

               
 

             

       
     

 

 The general solution of the differential equation in Corollary 1 is  
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     (       )
  

[ ∫ ‎             (       )
   

       
         ]  

 

where   is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 1 with      However, it should be also noted that there 

are other triplets           satisfying the conditions of Theorem 1. 

 

7. PARAMETER ESTIMATION 
 

 In this section, we determine the maximum likelihood estimates (MLEs) of the 

parameters of the ME distribution from complete samples only. Let              be a 

random sample of size   from            ,            . The likelihood function 

for the vector of parameters  
 

               

 .
    

   
/

 

   ∑ ‎
 
     ∏ ‎

 

   

(       )
   

{      [  (       )
 
]} 

 ∏ ‎

 

   

[  (       )
 
]
   

  

 

 Taking the log-likelihood function for the vector of parameters             we get  
 

 

 The log-likelihood can be maximized either directly or by solving the nonlinear 

likelihood equations obtained by differentiating (15). We can find the estimates of the 

unknown parameters by maximum likelihood method by setting the derivates equal to 

zero and solve them simultaneously. Therefore, we have to use mathematical package to 

get the MLE of the unknown parameters.  
 

 Note that the    log-likelihood has second derivatives with respect to the 

parameters, so that Fisher information matrix (FIM),        can be expressed as  
 

         
                

      
               

 

 Elements of the FIM can be numerically obtained by MAPLE software. The total FIM 

      can be approximated by  
 

    ̂  0
              

      
|    ̂1

   

              (16) 

 

 For real data, the matrix given in equation (16) is obtained after the convergence of 

the Newton-Raphson procedure in R software. Let  ̂  ( ̂  ̂  ̂  ̂) be the maximum 

likelihood estimate of            : Under the usual regularity conditions and that the 

parameters are in the interior of the parameter space, but not on the boundary, we have: 

√ ( ̂   )  
 

      
      , where      is the expected Fisher information matrix. The 

asymptotic behavior is still valid if      is replaced by the observed information matrix 

evaluated at  ̂, that is    ̂ . The multivariate normal distribution with mean vector 
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             and covariance matrix        can be used to construct confidence 

intervals for the model parameters. That is, the approximate          percent two-

sided confidence intervals for       and   are given, respectively, by  
 

 ̂    
 
√   

    ̂   ̂    
 
√   

    ̂    ̂    
 
√   

    ̂       ̂    
 
√   

    ̂   

 

where    
    ̂ ,    

    ̂ ,    
    ̂  and    

    ̂  are diagonal elements of   
    ̂  (     ̂ )

  
 

and   

 
 is the upper 

 

 
th percentile of a standard normal distribution. 

 

8. SIMULATION STUDY 
 

 ‎In this section‎, ‎the performance of the maximum likelihood method for‎estimating the 

ME parameters are discussed by means of a Monte Carlo simulation study‎. ‎The coverage 

probabilities (CP)‎, ‎mean square errors (MSEs)‎, ‎bias of the parameter estimates and 

estimated average lengths (ALs) are calculated using the R software‎. ‎We generate 

         samples of sizes                      from the ME distribution with 

                   . ‎Let ( ̂  ̂  ̂  ̂) be the MLEs of the new model 

parameters and (  ̂    ̂    ̂   ̂) be the‎standard errors of the MLEs‎. ‎The estimated 

biases‎and MSEs are given by‎‎‎ 
 

    ̂     
 

 
∑ ‎

 

   

( ̂   ) 

and 

   ̂     
 

 
∑ ‎

 

   

( ̂   )
 
 

 

for          . ‎The CPs and ALs are given‎, ‎respectively‎, ‎by‎ 
 

       
 

 
∑ ‎

 

   

   ̂           ̂ 
  ̂           ̂ 

  

and 

      
        

 
∑ ‎

 

   

  ̂ 
  

 

 ‎The initial value for optimization problem is real value of parameters. The numerical 

results for the above measures are displayed in the‎ Figure‎ 3. ‎Based on the Figure‎ 3, ‎the 

following results are concluded‎: 
 

 Biases for all parameters are positive‎, 

 ‎Estimated biases decrease when the sample size n increases‎, 

 ‎Estimated MSEs decay toward zero when the sample size n increases‎, 

 ‎The CPs are near to 0.95 and approach the nominal value when the sample size 

n increases‎, 

 ‎The ALs decrease when the sample size n increases‎. 
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Figure 3: Estimated CPs‎, ‎Biases‎, ‎MSEs and ALs  

for the Selected Parameter Values‎ 

 

9. APPLICATION 
 

 Now we use a real data set to show that the ME distribution can be a better model 

than the Kumaraswamy exponential distribution (KE), generalized exponential (GE), 

exponential, beta exponential (BE), exponentiated exponential geometric (EEG), gamma 

exponentiated exponential (GEE) and transmuted exponentiated exponential 

distributions.  
 

 The data set represent the total milk production in the first birth of 107 cows from 

SINDI race. These cows are property of the Carnaúba farm which belongs to the 

Agropecuária Manoel Dantas Ltda (AMDA), located in Taperoá City, Paraíba (Brazil). 

This data is presented by Cordeiro and Brito (2012). These data are 0.4365, 0.4260, 

0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 
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0.1479,  0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 

0.5707, 0.7131, 0.5853, 0.6768,  0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 

0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406,  0.4823, 0.5912, 0.5744, 0.5481, 

0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167,  0.6750, 

0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 

0.6465, 0.0650,  0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 

0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 

0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 

0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747. 
 

 In the applications, the information about the hazard shape can help in selecting a 

particular model. For this aim, a device called the total time on test (TTT) plot (Aarset, 

1987) is useful. The TTT plot is obtained by plotting        ((∑ ‎ 
       )     

      )  ∑ ‎ 
        where           and                 are the order statistics of the 

sample, against    . If the shape is a straight diagonal the hazard is constant. It is convex 

shape for decreasing hazards and concave shape for increasing hazards. The TTT plot for 

datasetis presented in Figure 4. This figures indicates that dataset has increasing failure 

rate function. 

 

 
Figure 4: TTT-Plot for Cows’‎Milks Dataset 

 

 These numerical values with MLEs and their corresponding standard errors (in 

parentheses) of the model parameters are listed in Tables 1. Table 2 includes likelihood 

ratio test results for comparing ME distribution with submodels. Table 3 present 

goodness of fit statistics (Akaike information criterion(AIC), Bayesian information 

criterion (BIC), Hannan-Quinn information criterion (HQIC), Consistent Akaike 

information criterion (CAIC)) for comparing ME with some other exponential extension 

models. These reports indicate ME model is superior. The plots of the fitted distributions 

to real datset are shown in Figures 6 and 7. 
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Table 1 

MLEs of the Parameters (Standard Errors in Parentheses)  

and Goodness-of-Fit Statistics for the Cows Milks Dataset 

 Model Estimates      ̂  

            3066.46 5244.90 2.28  0.007 -46.784 

  (21.74)   (20.17)   (0.02)   (1     )   

         (sub-model) 101.99 2.73  0.39  -38.947 

  (9.86)   (0.05)   (0.01)    

       (sub-model) 3.71 4.20   -10.06 

  (0.35)   (0.23)     

    (sub-model) 2.13    51.901 

  (25.95)      

           3.71 0.99 4.19  -10.06 

  (0.35)  (0.14)   (0.23)    

           1.75 4.54 3.25  -15.272 

  (0.09)   (0.24)   (0.16)   

           3.69 60.26 0.12  -18.84 

  (0.17)   (3.09)  (6     )    

           3.43 2.80 0.99  -18.94 

 (0.24) (0.14) (0.29)   

 

 

     
 

Figure 5: Fitted Densities: (Left) ME with Submodel (Right) ME and  

Some other Generalized Exponential Distributions 
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Table 2 

Likelihood Ratio Test Statistics with P-Values for the Cows Milk Data 

Model LR Statistic P-value 

           vs           7.836 0.005 

           vs         36.706 (1     ) 

           vs      98.685 0 
 

Table 3 

Goodness-of-Fit Statistics for the Cows Milk Data 

Model AIC BIC CAIC HQIC 

            -38.784 -28.092 -38.391 -34.449 

           -4.061 3.957 -3.828 -0.810 

           -9.272 -1.254 -9.039 -6.021 

          -12.840 -4.821 -12.607 -9.589 

           -10.940 -0.248 -10.548 -6.606 

 

10. CONCLUSION 
 

 We have proposed the new modified exponential (ME) distribution generated by a 

new class of generated distributions. We have derived important properties of the ME 

distribution like hazard rate function, moments, asymptotic distribution, characterizations 

and maximum likelihood estimation of parameters. We have illustrated the application of 

ME distribution to two real data sets used by researchers earlier. By comparing ME 

distribution with other popular generalization of exponential models we conclude that 

ME distribution performs better. 
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APPENDIX A 

 

Theorem 1: 

 Let         be a given probability space and let   [   ] be an interval for some 

    (         might as well be allowed). Let       be a continuous random 

variable with the distribution function   and let    and    be two real functions defined 

on   such that  
 

 [         ]   [         ]          
 

is defined with some real function  . Assume that            ,         and   is 

twice continuously differentiable and strictly monotone function on the set  . Finally, 

assume that the equation        has no real solution in the interior of  . Then   is 

uniquely determined by the functions       and   , particularly  
 

     ∫ ‎
 

 

 |
     

               
|    (     )    

 

where the function   is a solution of the differential equation    
    

      
 and   is the 

normalization constant, such that ∫ ‎
 

    .  
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APPENDIX B 
 

Characterization of distribution (4) based on two truncated moments 
 

Proposition 2: 

 Let           be a continuous random variable and let ,       {  

    [  (      )]
 
}
  

 and            [  (      )]
 
 for          The 

random variable   has pdf (6) if and only if the function   defined in Theorem 1 has the 

form  
 

     
 

   
{  [  (      )]

 
}      

 

Proof:  

 Let   be a random variable with pdf   , then  
 

(      ) [         ]  
 

   
{  [  (      )]

 
}
 
      

 and 

(      ) [         ]  
  

          
{  [  (      )]

 
}
   

      
 

and finally 
 

                 
 

   
     {  [  (      )]

 
}            

 

 Conversely, if   is given as above, then 
 

      
          

               
 

       (      )
   

  [          ] 
     

 

and hence 
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 Now, in view of Theorem 1,   has density      
 

Corollary 2: 

 Let :X   be a continuous random variable and let       be as in  

Proposition 2. The pdf of   is (5) if and only if there exist functions    and   defined in 

Theorem 1 satisfying the differential equation  
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 The general solution of the differential equation in Corollary 2 is  
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where   is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 2 with      However, it should be also noted that there 

are other triplets           satisfying the conditions of Theorem 1. 


